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The probability integral of the multivariate normal

distribution (ND) has received considerable attention since W. F.
Sheppard's (1900) and K. Pearson's (1901) seminal work on the
Eivariate ND. This paper evaluates the formula that represents the "n
X n" correlation matrix of the "chi{sub i)" and the standardized
multivariate normal density function. C. W. Dunnett and M. Sobel's
formula for the univariate ND function, and R{R. E. Bohrer and M. J.
Schervish's error-bounded algorithm for evaluating "F(sub n)" for
general "rho(sub 1j)" are discussed. Computationaily, the latter
algorithm is restricted to "n = 7"; even at "n = 7", it can take up
to 24 hours for it to compute a sinale probability with 10{sup -3)
accuracy on a computer than is capable of about 1-2 million scalar
floating point operations/second. This report presents a fast and
general approxim.tion (APX) for rectangular regions of the
multivariate ND function based on C. E. Clark's (1961) APX to the
moments of the maximum of "n" jointly normal random variables. The
performance of this APX compared to special cases in which the exact
results are known and error-bounded vreduction formulae show that the
APX's accuracy is adequate for many practical applications where
multivariate normal probubilities are required. The computational
speed of the Clark APX is unparalleled. The error bound for the APX
is about 10(sup -3) regardless of dimensionality, and accuracy
increases with increases in "rho®". The Clark algorithm provides a
generalization of Dunnett's (1955) results to the case of general
"rho(sub ij)", a natural application of which would be a
generalization of Dunn2tt's test to the case ¢f unequal sample sizes
among the "k + 1" ¢groups {(i.e., multiple treatment groups compared to
.2 single control group). One data table is included. (RLC)
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where ® represents the univariate -normal distribution function. This special case
is the basis for much of item-.esponse theory. More recently, however, Bohrer and
Schervish (1981), have developed an error bounded algorithm for evaluating F, for
general {p;;}. Computationally, this algorithm is restricted to n = 7, and even at
n = 7, it can require as much as 24 hours to compute a single probability with 10~3
accuracy on a computer chan is capable of approximately 1-2 million scalar floating
point operations per second.

The purpose of this report is to present a fast and general approximation for
rectangula: regions of the multivariate normal distribution function, that is based ;
on Clark’s (1961) approximation to the moments of the maximum of n jointly ncr- ¥
mal random variables. The performance of this approximation is then compared to  * :
special cascs in which the exact results are known (e.g., p;; = p = .5), cases in which
the integral reduces to a unidimensional quadrature evaluation (e.g., p;; = a;a;),
and finally error bounded reduction formulae for {p;s} and n < 7.
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. The probability integral of the multivariate normal distribution has received
considerable attention since Sheppard (1900) and Pearson (1901) published

their seminal work on the bivariate normal distribution. In the general case,
we are concerned with evaluating

g gy TRE AT

hy hy hn
Falhy b hai{p,}) = / / f 1. T2.....In; {pi, }dzy . . . dz,

where {p,, } represents the n x n correlation matrix of the z;'s, and f(z,.22,....2.; {p,;})
is the standardized multivariate normal density function. Direct evaluation of

F, is only possible for special cases of {p;,}. For excmple, Dunnett and Sobel

(1955) have shown that when p,, = a,a,(i # j). where | a; |< 1. then

Fulhy. ha.. ... hn:{pu})=/ {lﬂf(\/—ﬂ}]f(yd(y

where & represents the univariate normal distribution function. This special
case is the basis for much of modern psychometric theory. More recently,
however. Bohrer and Schervish (1931). have developed an error-bounded algo-
: rithm for evaluating F, for general {p,,}. Computationally, this algorithm is
f : restricted to n = 7. and even at n = 7. it can require as much as 24 hours to -
compute a single probability with 1073 accuracy on a computer than is capable
of approximately 1-2 million scalar floating point operations per second.

The purpose of this report is to present a fast and general approximation
3 tor rectangular regions of the multivariate normal distribution function based
’ on Clark’s (1961) approximation to the moments of the maximum of r jointly
! normal random variables. The performance of this approximation compared to
special cases in which the exact results are known and error-bounded reduction
formulae show the accuracy of the approximation to be adequate for many
practical ap plications where multivariate normal probabilities are required.
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1 Introduction

The probability integral of the multivariate normal distribution has re’ sived
considerable attention since Sheppard (1900) and Pearson (1901) published
their seminal work on the bivariate normal distribution. In the general case,
we are concerned with evaluating

hy hy hn
Falhyhy.. hoi{p,}) = /\/-wo [ fenza . xai {p, Dy . d,

(1

where {p,,} represents the n x n symmetric correlation matrix of the z,’s, and
flryoxa.... zai{py,}) is the standardized multivariate normal density func-
tion. Direct evaluation of F, is only possible for special cases of {pi;}. For
=xample. Dunnett and Sobel (1953) have shown that when p,, = a,q;(i # j).
where | a, |< 1. then

* hi — ey

Falhy. he..... ha:{p,}) = / [ﬁ‘l’ (—\/1———?)} fy)dly) (2)
=% L=l -

where & represents the univariate normal distribution function. The probabil-
ity'in equation (2) can be approximated to any practical degree of ‘accuracy
using Gauss-Hermite quadrature (Stroud and Sechrest. 1966). It should be
noted that when p,, = p for al! ;. ;. then ‘

0 h 1/2
F.(h.h..... h:{p}) = / [(b" (%)] fly)d(y) (3)
- \ —
and if p=.3and 4 =0.
‘ 1
F.(0.0..... 0:{.3}) = m— (4)

More recently. however, Bohrer and Schervish (1981). have developed an
error-bounded algorithm for evaluating F, for general {p, ,}. Computationally,
thie algorithm is restricted to n = 7. and even at n = 7. it can require as much
as 24 hours to compute a single probability with 10-° accuracy on a computer
than is capable of approximately 1-2 million scalar floating point operations
pet second. It is unclear whether vectorization of this algorithm is possible, so

~ that the greatly increased speeds of parallel computing environments could be

iy
:‘x“»..é/j?

exploited (e.g.. 20-30 million floating point instructions per second). Even still.
it is unlikely that this algorithm would be computational tractable for n > 10.
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An alternate approach to approximating F,, can be obtained by noting
that

F, =—°P7'(:C1 Shlszzshh"-znshn) (5)

If hy...hy = h = 0. and the r, follow a standardized multivariate normal
distribution. F? is a so-called “orthant™ probability. Note, however. that this
orthant probability is equivalent to

F? = Pr{max(z;..... r,) <0} (6)
f maz(z,..... I,) were normaily distributed. which it clearly is not, with mean
E{maz(z,..... r)] and variance V{max(r,.....z,)], then,

=6 h = E(max(ry...... rn) (7)

\/\'(ma.z-(.z'l ...... rn)

where in this case A = 0. For the more general rectangular region case of k;,
we could set A = 0 and subtract h, from the mean values of each of the z;,
which to this point have been expressed in standardized form.

To use this algorithm. we must first have an accurate method of computing
the first two moments of maux(x,..... r,) where the r, have a joint multivariate
normal distribution with general correlation {p,, }, and some bound on‘the error
introduced by assuming that max(x,....z,) has a normal distribution. Such
an approximation has been described by Clark (1961), and in the following,
we describe its use in connection with evaluating F,(ry. z2..... r.:{p,}). We
begin by reviewing Clark’s original formulae.

2 The Clark Algorithm

Let anyv three successive components from an n-variate vector. y,. be dis-
tributed:

2
yl { l’tl az ]
‘ 2
Veer | ™~ A gl |- | T 01 Pratt Ty
2
Yi+2 \ g2 C.042Pu42 Oi41 0142 Mg+ U,+2 J

Let y, = max(y,) = y. and compute the probability that y,,; > y, as
follows:

set S = (e = per1) /G
where ¢ = 0l+ 0k, —20,0041 Pt

Then Py >y) = Py —y>0) .
d’("':H-l)
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the value of the univariate normal distribution function at the standard deviate

—Jitls
Now let §i+1 = max(y;, yi+1) and assume (as an approximation) that (¥i+2, Jis1)
is bivariate normal with means,

ﬂ(yt+2) = g(yx+2) = Ris2 8)
ﬂ(!]wl) = 5(!7a+1) = #a‘b(:wl) + #i+1‘b("'3i+l) + C:+l¢(2:+l),
variances
Uz(ywz) = 5(yf+2) - 52(%+2) = 0’,‘2+2 (9) Q
X (G1) = E(G4) =Egim) = ok, N Y s,{ie
where o ‘ ;

oYL
A3 S ¥

o7

e ADAg IR

5(.‘734—1\ = (l‘f + Ulz)¢(:l+l )+ (l‘x2+l uy 0‘,2“)([)(-:.“) + (pts + pie1)Civ10(2i41),
(10)

e

and correlation

Opise2P(zi41) + 0’a+lPi+1.a‘+2¢( "-'-':+l) (11) R
! U(.‘;wl) ' '

N S A

p(.‘}t+l'yt+2) =
i

Then.

>

P(y42= nlax(y.-y.+1-y.+z)) = P((yi42 = Yix1 > 0) N (yig2 -4 > 0))

S i s Ar it Ak NI 25 o w

(12)
o is approximated by
-3
i v v -5
i’; P(y,-;.z > .'/1+l) = P(yz+2 =1 > 0) R
{ . %
i - ¢ Hiv2 = #Yig1) 5
:::“ - 2 3¢ - R - - ':»’
% VO + 0 (Gea) = 201420 (9i41)P(Yi414 Yiv2) ‘-‘;
(13 i
3 Assuming as a working approximation that y,41 is normally distributed o
with the above meau .and variance. we may therefore proceed. recursively from Y.
4 i =1toi=n— 1. where y,, is an independent dummy variate with mean 2/
- . . &
zero and variance zero (i.e. yn4; = 0). Then. for example. B
] . ‘2%
- K
et
it




Prp T INE L Tt G TGS T

SRAE N AN TR TSR R e R A et s W

S ; ¢ R e K e G L A
\ )
¥ A

.

W R TR

P[yM'I = mx(yh Y2,-- -1 Unsd )]

T,

g = P{yne1 =1 >0) N (¥rs1 — ¥2 >0)N...0 (Ynsr = Yn > 0)]

. = P[(“yl>mn("y2>0)n---n("yn>0)] (14)
5 approximates the probability of the negative orthant of the specified multi-
3 variate normal distribution. In the case of n correlated standard normals, the

thant probabilities are identical. The probability of any

negative and positive oz
other orthant can be obtained by reversing the signs of the variates correspond-
ji41 is not normally distributed.

ing to 1's in the orthant pattern. Of course,
Errors produced by substitating normal approximations for the moinents of

RS,

ppernrgy

j Ji41 aTE discussed in the following section. :
] More generally. to compute a multivariate normal probability over an n
' dimensional rectangular region. for example. &
;
i Ao oh h
/ / / flry. Iae.. .. 2n: {py})dEe. .dz, (15)
B -0 J= - )
§ \ %
we compute the negative orthant setting ftng1 = h. Finally, to approximate the e
integral for general h,. we compute the negative orthant by setting pn41 =0 *@E
' and g, = g, — h,. . %
3 Accuracy of the Clark Approximation 3
N {3
. The crrors of the Clark approximation result from the replacement «f non- 53
\ normal distributions by normal approximations. For example, suppose that 2%
: we are interested in the maximum of four standard normal variables, i.e., f
niaz{y1.Y2. Ya- Ys)- BY assuming that Js 18 normally distributed with expected s

: value E[maz(y.y2)} and variance V{maz(y;.y2)}. we can then use the mo- :i
ments of max(y,.ys) as an approximation for vhose of maz(y1,y2,y3)- Next, 3
‘ we assume that §j3 is normally distributed with expectation and variance equal .:
N

! to the corresponding moments of maz(J,.ya). and can therefore use the mo-
ments of maz(J3,yq) as an approximation for those of maz(yy.....y4)- In this
‘ example, of course, §; and s are not normally distributed. Furthermore, this
s a rare case in which the distribution of a statistical variate diverges from

{ normality as sample size increases. Tippet (1925) first showed that skewness
dard normals goes form .019 and .62

H

e
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: and kurtosis of the maximum of n stan
respectively for n =2 to 129 and .765 for n = 100 to .618 and 1.088 for n = ¥
! 1000. In terms of expected values of n standard normal variables, the effect of’ i

this non-normality is quite small. For example. for n = 10, the true value is
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1.5388 and the approaimation yields 1.5367. Even for n = 1000 the expected
value is 3.2414 and the \pproximated value is 3.2457.

The effect of non-nor.nality on the accuracy of the approximation is also
dependent on the difference between E(y;-1,y). For example,.suppose we
wish to approximate the moments of maz(y,,y;) where y; and y; are not
normally distributed. Clark (1961) points out that if the difference E(y,) -
E(y;) is large telative to the greater of V¥/3(y,) and VV/3(y;) the random
variable maz(y,. y2) is almost identical to y;. Certainly the first two moments
of maz(yi.y2) would be minimally affected by replacing y and y; by normal
approximations. However if E(y,) — E(y;) is’small relative to the respective
standard deviations. then the use of normal approximations could conceivably
result in significant errors in the approximation of the mean and va-iance of
their maximum.

[n light of this. the following illustrations of the accuracy of the Clark
approximation are. in fact. the worst case results, since they repi=sent the case
in which the expected values of the y; are equal. These results indicate that the
error bound for the Clark approximation is approximately 103, as illustrated
in the following section.

4 Illustration

To evaluate the performance of this algorithni. we have examined a series of
equa-correlated multivariate normal distributions for which exact results are
known (see Gupta. 1963) and those considered by Schervish (1984). Table 1A
displays results for 3 to 7 equa-correlated standard normal random variables
with selected values of p = .2. .3. .8 and .9. and upper integration bounds
of 0. 1. and 2. Inspection of the tabled probabilities reveals that the Clark
algotithm is generally accurate to at least 10~3 and that computational times
are a linear function of dimensionudity. The speed of the Clark algorithm does
nct depend on p. In contrast. the speed of MULNOR (Schevish, 1984) is expo-
nentially increasing with both dimensionality and p. Ir the 7-variate normal
case with p,, = .9, J.IULNOR required almost a day to compute a probability
which was a:curate to 2 x 10~%, whereas the Clark algorithm computed the
same probavility with 4 x 10~ accuracy in less than three thousandths of a
-second. Inspection of these results and others not reported here, suggest that
the acctracy of the Clark approximation increases with increasing p.

Table 1B displays results for orthant probabilities of higher dimensional
integrals (n = 10. 20. and 40), for the special case of p = .5. where F =
/(n 4+ 1). Again. results are accurate to at least 10~3. and computational
times are lineag in n. MULNOR could not be used to evaluate integrals of this
dimensionality.

10
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Finally, Table 1C displays results for some tail psobabilities of the muiti-
variate normal distribution. In this case, the upper bound of the integration
was -2.5, n = (3,5,10), and p = (.5,.9). These probabilities ranged from 10~°
to 10~% and accuracy of the Clark approximation was 10~3 in all cases.

5 Discussion

Clark's (1961) formulae for the moments of the maximum of n correlated ran-
dom normal variates can clearly be used to obtain a fast and accurate ap-
proximation to multivariate normal. probabilities. Ex .miration of a series of
i examples involving special cases in which the true results are known, reveals
that the error bound fo: the approximation is approximately 10~ regardless
of dimensionality, and that accuracy increases with increases in | p |. These
results are conservative in that we would expect the ill effect of using normal

s approximations to be g~ test when g, = p,(i = 1,n) which is the case used
in the illustrations. :
In terms of computational speed. the Clark approximation is clearly un-
paralleled. A reasonable escimate of the speed of the Clark algorithm is given 2
by. @
: ‘ B
: - 0004
: soeed = ( 000 ('i-)-) seconds T
: negaflop { . ,

where megaflop is the number of scalar floating point instructions per second
that the computer is capable of performing. .o
Numetous applications of the Ciark algorithm suggest themselves. Some
X preliminary work in this area has already heen conducted by Daganzo (1984),
: in the context of discrete choice models of consumer behavior. and by Gibbons.
Bock and Hedeker (1987) in item-response theory. Other potential applications
include multivariate generalizations of probit analysis (see Ashford and Sow-
den. 1970 for the bivariate case), and random-effect probit models (Gibbons
and Bock. 1987), where the Clark approximation was used to estimate first-

order autocorrelation among the residual errors.
. Another area of potential interest is in the approximation of multivariase
t probabilities. which can be considered as the joint distribution of n variates
t, =2/s,(i = 1.2,....n) where the z, have a multivariate normal distribution
! with zero means and unknown variance 2. and known correlation ma:rix {p;, }.
while vs?/0? has a \? distribution with v degrees of freedom and is independent
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of the z,. Dunnett (1953) has evaluated this joint density for the case of
pi; = p = ;5. by obtaining Fa(z1.32.. ... 2n; {pi;}) and integrating out s. Use
of the Clark algorithm would provide a generalization of their result to the

i

o R s

-1

s . .
P IR P SO NPy Vi R

1

1

R s P AN T LD




case of general {p;;}, a natural application of which would be a generalization
of Dunnett's test to the case of unequal sample sizes among the k + 1 groups
(i.e., treatment groups and a single control).
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Table 1

Prcbability that n Standard Normal Random Variables with
Common Correlation p, are Simultaneously < h.

A. Comparison with MULNOR
MULNOR Clark

n h p True! Prob Time* Time® Prob Time’
3 20 .9 96170 .961%0 .196 060 96185  .0008
4 20 .5 92345 92843 7.275 1.760 .93088 .0012
4 20 .8 94739 94733 13.735 2913 94819 .0012
4 20 9 .95708 .95707 18.5337 3.853 95730 .0012
5 L0 .3 32111 52113 40.461 $8.900 31341 .0016
™00 .9 32967 32963 NA 93040 .32921  .0026

0.0 .2 .04043 .04033 NA 33 04122  .0026

Gupta (1963)

Seconds on a DEC 2060

Seconds on a COMPAQ 336-25. Weitek 3167, SVS FORTRAN
Accuracy set to 1077 instead of 10~ for MULNOR

B. Higher Dimensional Integrals

Clark

n h p True! Prob Time
10 0 .53 .09091 .03907 .0044
20 0 .5 04762 .04657 .0134
40 0 5 .02439 .02390 .0459

TF0.0.....0:{3}) =

C. Tail Probabilities

n h p True! Clark
3 23 3 .00017 .00021
3 .25 .9 .00230 .00231
: 5 -25 .3 .00003 .u0004
: 3023 .9 00157 .00156
10 -25 .5 .00000 .00000
‘ 10 -2.5 .9 .00099 .00098

P'Gupta (1963)
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